PARALLEL CIRCUITS (DC)

POWER LAW

$P=I \times E$
$I=P / E$
$E=P / I$

Parallel Circuit Laws

Voltage - The voltage drop across each branch of a parallel circuit is the same as the applied voltage.
$\mathrm{E} 1=\mathrm{E} 2=\mathrm{E} 3=\mathrm{E} 4$ (etc.) $=\mathrm{ET}$ (total)
Current - The sum of the currents through all of the branches is equal to the total current.
$I 1+I 2+I 3+14$ (etc.) $=I T$ (total)
Resistance - The total resistance is always less than the resistance of the lowest-value resistor, or branch, in the circuit. There are three formulas you can use.
$\mathrm{RT}=\mathrm{R} / \mathrm{N}$ (when all resistors are of equal value)
Product over Sum $-R T=\underline{R 1 \times R 2}$

$$
\overline{\mathrm{R} 1+\mathrm{R} 2} \text { can use this on two branch resistances at a time. }
$$

Reciprocal Formula -

$$
\mathrm{RT}=\frac{1}{\frac{1}{\mathrm{R} 1}+\frac{1}{\mathrm{R} 2}+\frac{1}{\mathrm{R} 3}+\frac{1}{\mathrm{R} 4}} \text { (etc.) }
$$

Power - The total power is equal to the sum of the power used across each unit of resistance.
P1 + P2 + P3 + P4 (etc.) = PT (total)

	R1	R2	R3	R4	Total
E	277 V				
I	.00231 A	.00139 A	.00154 A	.00115 A	.00639 A
R	119913Ω	119281Ω	179870Ω	240870Ω	43349Ω
P	.640 W	.385 W	.427 W	.318 W	1.770 W

Follow these numbered steps to solve. Colors below coordinate with the EIRP chart above. No shading or colors indicate provided values.

1. $11=I T-(I 2+I 3+I 4)=I 1$
$.00231 A=.00639-(.00139 A+.00154 A+.00115 A)$
2. $P 1 / 1=E 1$
. 640 W/. 00231 A
3. $\mathrm{P} 1+\mathrm{P} 2+\mathrm{P} 3+\mathrm{P} 4=\mathrm{PT}$
$.640 W+.385 W+.427 W+.318 W=1.770 W$

W:ISaturday School - Admin - Prior Years\Line SS 19-20\1st Year Instructor filesITab 6 - Parallel Circuits handout (color).doc

